The Diagnosis and Management of Lipodystrophy Syndromes: A Multi-Society Practice Guideline

Rebecca J. Brown, Committee Chair, David Araujo-Vilar, Pik To Cheung, David Dunger, Abhimanyu Garg, Michelle Jack, Lucy Mungai, Elif A. Oral, Nivedita Patni, Kristina I. Rother, Julia von Schnurbein, Ekaterina Sorkina, Takara Stanley, Corinne Vigouroux, Martin Wabitsch, Rachel Williams, and Tohru Yorifuji*

Objective: Lipodystrophy syndromes are extremely rare disorders of deficient body fat associated with potentially serious metabolic complications, including diabetes, hypertriglyceridemia, and steatohepatitis. Due to their rarity, most clinicians are not familiar with their diagnosis and management. This practice guideline summarizes the diagnosis and management of lipodystrophy syndromes not associated with HIV or injectable drugs.

Participants: Seventeen participants were nominated by worldwide endocrine societies or selected by the committee as content experts. Funding was via an unrestricted educational grant from AstraZeneca to the Pediatric Endocrine Society. Meetings were not open to the general public.

Evidence: A literature review was conducted by the committee. Recommendations of the committee were graded using the system of the American Heart Association. Expert opinion was used when published data were unavailable or scarce.

Consensus Process: The guideline was drafted by committee members and reviewed, revised, and approved by the entire committee during group meetings. Contributing societies reviewed the document and provided approval.

Conclusions: Lipodystrophy syndromes are heterogeneous and are diagnosed by clinical phenotype, supplemented by genetic testing in certain forms. Patients with most lipodystrophy syndromes should be screened for diabetes, dyslipidemia, and liver, kidney, and heart disease annually. Diet is essential for the management of metabolic complications of lipodystrophy. Metreleptin therapy is effective for metabolic complications in hypoleptinemic patients with generalized lipodystrophy and selected patients with partial lipodystrophy. Other treatments not specific for lipodystrophy may be helpful as well (eg, metformin for diabetes, and statins or fibrates for hyperlipidemia). Oral estrogens are contraindicated. (J Clin Endocrinol Metab 101: 4500–4511, 2016)

T he lipodystrophy syndromes are a heterogeneous group of rare disorders that have in common selective deficiency of adipose tissue in the absence of nutritional deprivation or catabolic state (Figure 1). Lipodystrophies are categorized based on etiology (genetic or acquired) and distribution of lost adipose tissue, affecting the entire body (generalized) or only regions (partial). This yields four major categories: congenital generalized lipodystrophy (CGL), familial partial lipodystrophy (FPLD), acquired generalized lipodystrophy (AGL), and acquired partial lipodystrophy (APL) (Figure 1). Additional subtypes include progeroid disorders, autoinflammatory disorders, and others (Table 1). This practice guideline will not discuss lipodystrophy in HIV infected patients or localized lipodystrophy (eg, from injectable drugs).

ISSN Print 0021-972X ISSN Online 1945-7197
Printed in USA
Copyright © 2016 by the Endocrine Society
This article is published under the terms of the Creative Commons Attribution-NonCommercial License (CC-BY-NC; https://creativecommons.org/licenses/by-nc/4.0/).
Received June 23, 2016. Accepted September 14, 2016.
First Published Online October 6, 2016.

* Author Affiliations are shown at the bottom of the next page.
Abbreviations: AGL, acquired generalized lipodystrophy; APL, acquired partial lipodystrophy; C3, complement 3; CGL, congenital generalized lipodystrophy; FPLD, familial partial lipodystrophy; HbA1c, glycosylated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MPGN, membranoproliferative glomerulonephritis; NAFLD, nonalcoholic fatty liver disease; PCOS, polycystic ovary syndrome.
Lipodystrophy syndromes are frequently associated with hormonal and metabolic derangements resulting in severe comorbidities (Table 2) that depend on the subtype, extent of fat loss, age, and gender. Many complications of lipodystrophy are secondary to deficient adipose mass, resulting in ectopic lipid storage in the liver, muscle, and other organs and causing insulin resistance. Insulin resistance leads to diabetes, hypertriglyceridemia, polycystic ovarian syndrome (PCOS), and nonalcoholic fatty liver disease (NAFLD) (1).

Major causes of mortality include heart disease (cardiomyopathy, heart failure, myocardial infarction, arrhythmia) (2–5), liver disease (liver failure, gastrointestinal hemorrhage, hepatocellular carcinoma) (6, 7), kidney failure (6), acute pancreatitis (7), and sepsis.

Due to the rarity of lipodystrophy syndromes, many clinicians are unfamiliar with their diagnosis and management. In December 2015, an expert panel including representatives from endocrine societies around the world convened to generate this practice guideline. Evidence was rated using the system of the American Heart Association (Supplemental Table 1) (8). Details of the literature review, consensus, and endorsement process are provided in the Supplemental Data.

Overview of Lipodystrophy Syndromes

This section reviews major categories of lipodystrophy. Details on individual subtypes are in Supplemental Table 2.

Congenital generalized lipodystrophy (Berardinelli-Seip syndrome)

CGL is an autosomal recessive disorder characterized by near-complete lack of fat starting at birth or infancy, prominent muscles, phlebomegaly, acanthosis nigricans, hepatomegaly, umbilical prominence, and voracious appetite in childhood (9, 10). Multiple genetic causes have been identified, each with unique clinical features (11–13).
Metabolic complications are frequent and may be severe. Cardiomyopathy or rhythm disturbances may occur.

Familial partial lipodystrophy

FPLD is a group of usually autosomal dominant disorders characterized by loss of fat affecting the limbs, buttocks, and hips (10). Regional excess fat accumulation is frequent, varies by subtype, and may result in a Cushingoid appearance. Fat distribution is typically normal in early childhood, with loss of fat occurring around puberty. Muscular hypertrophy is common. Metabolic complications are common in adulthood (14), with increased risk of coronary heart disease (15) and occasionally early cardiomyopathy.

Acquired generalized lipodystrophy (Lawrence syndrome)

AGL is more common in females (females:males, 3:1) and appears usually before adolescence (but may develop at any time in life) with progressive loss of fat affecting the whole body including palms and soles (4). Some fat accumulation can appear in the face, neck, or axillae. Metabolic complications are common in adulthood (14), with increased risk of coronary heart disease (15) and occasionally early cardiomyopathy.

Table 1. Subtypes and Inheritance of Lipodystrophy

<table>
<thead>
<tr>
<th>Inheritance Pattern</th>
<th>Subtype</th>
<th>Lipodystrophy Phenotype</th>
<th>Genes Involved</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autosomal recessive</td>
<td>CGL</td>
<td>Near total absence of body fat, generalized muscularity, metabolic complications</td>
<td>AGPAT2, BSCL2, CAV1, PTRF, PCYT1A, PPARY</td>
<td>11, 84–88</td>
</tr>
<tr>
<td></td>
<td>FPLD</td>
<td>Absence of fat in limbs, metabolic complications</td>
<td>CIDEC, LIPE, PCYT1A</td>
<td>87, 92, 94–96</td>
</tr>
<tr>
<td></td>
<td>Autoinflammatory</td>
<td>Variable absence of fat, variable metabolic complications</td>
<td>PSMB8</td>
<td>97</td>
</tr>
<tr>
<td>Progeroid syndromes</td>
<td>FPLD</td>
<td>Partial or generalized absence of body fat, progeroid features, variable metabolic complications</td>
<td>LMNA, ZMPSTE24, SPRTN, WRN, BANF1</td>
<td>89–93</td>
</tr>
<tr>
<td></td>
<td>SHORT syndrome</td>
<td>Variable loss of body fat, metabolic complications</td>
<td>PIK3R1</td>
<td>110</td>
</tr>
<tr>
<td>Autosomal dominant</td>
<td>FPLD</td>
<td>Absence of fat from the limbs, metabolic complications</td>
<td>LMNA, PPARG, AKT2, PLIN1</td>
<td>98–103</td>
</tr>
<tr>
<td></td>
<td>Progeroid syndromes</td>
<td>Partial or generalized absence of body fat, progeroid features, variable metabolic complications</td>
<td>LMNA, FBN1, CAV1, POLD1, KCNJ6</td>
<td>104–109</td>
</tr>
<tr>
<td>Acquired</td>
<td>AGL</td>
<td>Near total absence of body fat, metabolic complications</td>
<td>None</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>APL</td>
<td>Absence of fat in upper body with increased fat in lower body, mild or no metabolic complications</td>
<td>None</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 2. Major Comorbidities and Complications of Lipodystrophy

<table>
<thead>
<tr>
<th>Complication</th>
<th>Affected Subtypes</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperphagia</td>
<td>AGL, CGL, ±FPLD</td>
<td>4, 10, 111</td>
</tr>
<tr>
<td>Dyslipidemia (high triglycerides, low HDL-cholesterol, acute pancreatitis, eruptive xanthomas)</td>
<td>AGL, CGL, FPLD</td>
<td>4, 5, 7, 9, 13, 21, 30</td>
</tr>
<tr>
<td>Insulin resistance/diabetes, acanthosis nigricans (and diabetes complications)</td>
<td>AGL, CGL, FPLD</td>
<td>4, 5, 7, 9, 13, 17, 20, 21, 69</td>
</tr>
<tr>
<td>Reproductive dysfunction (PCOS, oligomenorrhea, reduced fertility, hirsutism, preeclampsia, miscarriage, macrosomia)</td>
<td>AGL, CGL, FPLD</td>
<td>4, 5, 7, 10, 14, 20, 55, 112</td>
</tr>
<tr>
<td>NAFLD (ranging from simple steatosis to cirrhosis)</td>
<td>AGL, CGL, FPLD, ±APL</td>
<td>4, 7, 10, 17, 19, 49, 51, 69, 113</td>
</tr>
<tr>
<td>Renal dysfunction (proteinuria, MPGN, FSGS, diabetic nephropathy)</td>
<td>AGL, CGL, FPLD, APL</td>
<td>17, 34, 114</td>
</tr>
<tr>
<td>Heart disease (hypertension, cardiomyopathy, arrhythmias, conduction abnormalities, CAD)</td>
<td>AGL, CGL, FPLD</td>
<td>3–5, 9, 13, 15, 25</td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td>AGL, APL</td>
<td>4, 10, 17, 19, 20</td>
</tr>
</tbody>
</table>

Abbreviations: CAD, coronary artery disease; FSGS, focal segmental glomerulosclerosis. Many of these features are also found in other forms of lipodystrophy, including progeroid disorders.
bolic complications are frequent and may be severe. AGL is often associated with autoimmune diseases (4, 16).

Acquired partial lipodystrophy (Barraquer-Simons syndrome)

APL is more frequent in females (females:males, 4:1) and usually begins in childhood or adolescence. Loss of fat follows a cranio-caudal trend, progressively affecting the face, neck, shoulders, arms, and trunk. Fat accumulation can appear in the hips, buttocks, and legs (17). APL is associated with autoimmune diseases, especially membranoproliferative glomerulonephritis (MPGN) in approximately 20% (17). Most patients have low serum complement 3 (C3) levels, and some have presence of C3 nephritic factor. Metabolic complications are uncommon (17).

Diagnosis of Lipodystrophy

- Diagnosis of lipodystrophy is based on history, physical examination, body composition, and metabolic status. (Class I, Level B)
- There are no defined serum leptin levels that establish or rule out the diagnosis of lipodystrophy. (Class IIa, Level C)
- Confirmatory genetic testing is helpful in suspected familial lipodystrophies. (Class I, Level A)
- Genetic testing should be considered in at-risk family members. (Class IIa, Level C)
- Serum complement levels and autoantibodies may support diagnosis of acquired lipodystrophy syndromes. (Class IIa, Level B)

Firm diagnostic criteria for lipodystrophy have not been established. Figure 2 shows a suggested diagnostic approach.

Establishing the subtype of lipodystrophy

Pattern of fat loss

Although the pattern of body fat loss in patients with a particular subtype of genetic lipodystrophy is quite characteristic, heterogeneity occurs in the onset, severity, and pattern of fat loss, even within families.

Distinguishing genetic from acquired lipodystrophy

Pedigree analysis can suggest genetic vs acquired lipodystrophy. Review of photographs from infancy may distinguish CGL from AGL because infants typically show absent fat in CGL and normal fat in AGL. However, there have been cases of AGL with loss of fat during the first few months of life (4). Patients with AGL lack family history but can be confused with any type of genetic lipodystrophy, especially de novo mutations.

The presence of autoimmune diseases (myositis, type 1 diabetes, autoimmune hepatitis, and others) (4, 10, 16, 17, 19, 20) increases the suspicion of acquired lipodystrophy. In APL, low serum C3, C3 nephritic factor, proteinuria, or biopsy-proven MPGN support the diagnosis.

Genetic testing

Genotyping may include limited candidate gene sequencing, a panel of candidate genes, or whole-exome/whole-genome sequencing. The website www.genetests.org lists clinical and research laboratories conducting genetic testing for lipodystrophy syndromes. Because there is strong evidence for additional loci for genetic lipodystrophies, negative tests do not rule out a genetic condition.
Genetic counseling and screening of family members

Genetic counseling must take into consideration that the current understanding of the natural history of genetic lipodystrophies is incomplete. In affected pedigrees, premarital counseling with genetic testing to detect carrier status can be considered.

Clinical diagnosis of lipodystrophy may be difficult in men (21), and some genotypes are associated with mild lipodystrophy phenotypes (22, 23). Genetic screening of family members may help identify individuals with subtle phenotypes. Genetic screening may be particularly important for families with specific LMNA mutations associated with cardiomyopathy and arrhythmia.

Screening for Comorbidities

All patients should be screened for diabetes, dyslipidemia, NAFLD, and cardiovascular and reproductive dysfunc-
Reproductive dysfunction

- Gonadal steroids, gonadotropins, and pelvic ultrasonography should be performed as clinically indicated. (Class IIa, Level C)
- Pubertal staging should be performed annually in children. (Class IIa, Level C)

Early adrenarche, true precocious puberty, or central hypogonadism may occur in children with generalized lipodystrophy. Oligo/amenorrhea, decreased fertility, and PCOS are common in women.

Cardiac disease

- Blood pressure should be measured at least annually. (Class I, Level C)
- Electrocardiogram and echocardiogram should be performed annually in CGL and progeroid disorders, at diagnosis, and as clinically indicated in FPLD and AGL. (Class IIa, Level C)
- Evaluation for ischemia and rhythm monitoring should be considered in patients with progeroid disorders and FPLD2 with cardiomyopathy. (Class IIa, Level C)

Hypertension is common (25), even in children. In patients with CGL4, atypical progeroid syndromes, and FPLD2 due to LMNA mutations, cardiac abnormalities including ischemic heart disease, cardiomyopathy, arrhythmias, and sudden death are reported (3, 23, 26–33).

Kidney disease

- Urine protein should be measured annually using 24-hour urine collection or spot urine protein-to-creatinine ratio. (Class IIa, Level C)

Proteinuria is common (34). Kidney biopsy should be performed as clinically indicated, and pathology may include diabetic nephropathy, focal segmental glomerulosclerosis (especially in CGL) (34) or MPGN (especially in APL) (17).

Malignancy

Lymphomas, particularly peripheral T-cell lymphoma, occur in AGL, with a prevalence of approximately 7% (4, 35). Appropriate screening has not been established but would reasonably include annual skin and lymph node examination. Generalized lipodystrophy has been reported as a paraneoplastic manifestation of pilocytic astrocytoma in three children who regained body fat after cancer therapy (36). Clinicians should consider screening for brain tumors in children who present with idiopathic AGL or atypical CGL. Specific progeroid syndromes (eg, Bloom and Werner syndromes) are associated with increased malignancy risk (Supplemental Table 2).

Treatment of Lipodystrophy Syndromes

Current therapies prevent or ameliorate the comorbidities of lipodystrophy syndromes. There is no cure for lipodystrophy and no treatment that can regrow adipose tissue.

Diet

- Most patients should follow diets with balanced macronutrient composition. (Class IIa, Level C)
- Energy-restricted diets improve metabolic abnormalities and may be appropriate in adults. (Class I, Level C)
- Very-low-fat diets should be used in chylomicronemia-induced acute pancreatitis. (Class I, Level C)
- A dietician should be consulted for specialized dietary needs, especially in infants and young children. Overfeeding should be avoided. (Class IIa, Level C)
- Medium-chain triglyceride oil formulas can provide energy and reduce triglycerides in infants. (Class IIa, Level C)

The cornerstone of therapy for metabolic complications of lipodystrophy is diet. Studies of specific diets in

Table 3. Clinical Features That Increase the Suspicion of Lipodystrophy

<table>
<thead>
<tr>
<th>Essential feature</th>
<th>Physical features</th>
<th>Comorbid conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalized or regional absence of body fat</td>
<td>Failure to thrive (infants and children)</td>
<td>Diabetes mellitus with high insulin requirements</td>
</tr>
<tr>
<td></td>
<td>Prominent muscles</td>
<td>Severe hypertriglyceridemia</td>
</tr>
<tr>
<td></td>
<td>Prominent veins (phlebomegaly)</td>
<td>Severe hypertriglyceridemia</td>
</tr>
<tr>
<td></td>
<td>Severe acanthosis nigricans</td>
<td>Non-alcoholic steatohepatitis in a non-obese individual</td>
</tr>
<tr>
<td></td>
<td>Eruptive xanthomata</td>
<td>Early-onset cardiomyopathy</td>
</tr>
<tr>
<td></td>
<td>Cushingoïd appearance</td>
<td>PCOS</td>
</tr>
<tr>
<td></td>
<td>Acromegaloïd appearance</td>
<td>Other historical clues</td>
</tr>
<tr>
<td></td>
<td>Progeroid (premature aging) appearance</td>
<td>Autosomal dominant or recessive pattern of similar physical features or metabolic complications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significant hyperphagia (may manifest as irritability/aggression in infants/children)</td>
</tr>
</tbody>
</table>

Adapted from Ref. 18.
lipodystrophy are lacking, and recommendations rely on sparse literature and clinical experience.

Patients with lipodystrophy, especially generalized forms, are typically hyperlipidemic due to leptin deficiency. Energy-restricted diets in adolescents and adults lower triglycerides and glucose (37), but dietary restriction is challenging to achieve. Food restriction to control metabolic complications must be balanced by requirements for growth in children. Overfeeding to achieve normal weight may worsen metabolic complications and hepatic steatosis. Assessment of weight-for-length and body mass index by comparison to reference growth data is not appropriate because body composition is atypical. Low weight-for-length or body mass index is acceptable provided linear growth is maintained.

Patients should follow a 50–60% carbohydrate, 20–30% fat, and approximately 20% protein diet. Simple sugars should be restricted in preference for high-fiber complex carbohydrates, distributed evenly among meals and snacks and consumed in combination with protein or fat. Dietary fat should be primarily cis-mono-unsaturated fats and long-chain omega-3 fatty acids. In extremely hypertriglyceridemic infants, medium-chain triglyceride-based formula may help (38, 39). During acute pancreatitis, bowel rest followed by a very-low-fat (<20 g) diet should be used.

Exercise
- Patients with lipodystrophy should be encouraged to exercise in the absence of specific contraindications. (Class IIa, Level C)
- Patients with subtypes of lipodystrophy predisposed to cardiomyopathy should undergo cardiac evaluation before initiating an exercise regimen. (Class III, Level C)

Individuals with lipodystrophy engaged in intense exercise have amelioration of metabolic complications. Most patients should be encouraged to be physically active. However, strenuous exercise should be avoided in patients with cardiomyopathy. Contact sports should be avoided in patients with severe hepatosplenomegaly and CGL patients with lytic bone lesions.

Metreleptin
- In generalized lipodystrophy, metreleptin (with diet) is a first-line treatment for metabolic and endocrine abnormalities (Class I, Level B) and may be considered for prevention of these comorbidities in children. (Class IIb, Level C)
- Metreleptin may be considered for hypoleptinemic (leptin <4 ng/mL) patients with partial lipodystrophy and severe metabolic derangements (HbA1c >8% and/or triglycerides >500 mg/dL). (Class IIb, Level B)

Currently, metreleptin (recombinant human methionyl leptin) is the only drug approved specifically for lipodystrophy. It is approved in the United States as an adjunct to diet for treatment of metabolic complications in patients with generalized lipodystrophy (http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm387060.htm). In Japan, it is approved for both generalized and partial lipodystrophy (http://www.shionogi.co.jp/en/company/news/2013/pmrltj0000000ufd-att/e_130325.pdf). It is available in other parts of the world (eg, Europe) through compassionate use programs. There is no age limit for initiation of metreleptin; children as young as 6 months have been treated. A dosing algorithm is provided in Supplemental Table 4 (40). Dose adjustments should be made in response to metabolic parameters and weight change, with clinical and laboratory assessment performed every 3–6 months.

Metreleptin in generalized lipodystrophy

Metreleptin decreases hyperphagia (41–45), frequently leading to weight loss. Reduced food intake is at least partially responsible for many of the metabolic improvements. If excessive weight loss occurs, the dose of metreleptin should be reduced (Supplemental Table 4) (40).

Metreleptin markedly improved fasting glucose as early as the first week (42) and lowered HbA1c by 2% after 1 year (46). To reduce the risk of hypoglycemia, frequent glucose monitoring is recommended. Providers should consider reducing insulin doses by approximately 50% on initiation of metreleptin in patients with well-controlled diabetes. Many young patients with CGL are able to discontinue insulin (46).

Metreleptin lowered triglycerides within 1 week (42), reaching 60% reduction at 1 year (46). Metreleptin also decreased LDL- and total cholesterol but did not change HDL-cholesterol (47, 48). Acute pancreatitis due to hypertriglyceridemia has occurred in patients who acutely discontinued or reduced metreleptin (47).

Metreleptin reduced hepatic steatosis, serum transaminases, and NASH scores within 6 to 12 months (42, 49–51). In one case, metreleptin ameliorated recurrence of severe hepatic steatosis after liver transplantation (52). Metreleptin decreased proteinuria in most patients (34, 42). However, four patients had worsened renal disease during metreleptin treatment, so renal function should be monitored closely with preexisting renal disease (34).

In females, metreleptin normalized gonadotropin secretion, leading to normal progression of puberty, normalization of menstrual periods (42, 45, 53, 54), and improved fertility (1). Metreleptin decreased T in women but
did not alter ovarian morphology (45, 53, 55). In males, meteoleptin increased T (45).

Meteoleptin in partial lipodystrophy

The response to meteoleptin in partial lipodystrophy is less robust than in generalized lipodystrophy. In one study, meteoleptin reduced hypertriglyceridemia and improved glycemia in severely hypoleptinemic patients with partial lipodystrophy and severe metabolic dearrangements (baseline HbA1c >8%, triglycerides >500 mg/dL, leptin <4 ng/mL) (46). In a second study, meteoleptin improved triglycerides and indices of insulin sensitivity and secretion in FPLD2 patients with moderate to severe hypoleptinemia (56). However, in a third study, no glycemic improvement was observed in FPLD2 patients with serum leptin <7 ng/mL (57). Meteoleptin is only available to patients with partial lipodystrophy through clinical trials, compassionate use programs, and in Japan.

Side effects of meteoleptin

Approximately 30% of patients experience side effects (47). The most clinically important are hypoglycemia (in patients receiving concomitant insulin) and infrequent injection-site reactions (erythema, urticaria).

In vivo neutralizing antibody activity to leptin has been reported (58, 59). The clinical implications remain unclear, but may include treatment failure and sepsis (59). Additional serious adverse events occurring during meteoleptin treatment are likely related to the underlying lipodystrophy syndrome, rather than meteoleptin. These include T-cell lymphoma in patients with AGL (35), pancreatitis (47), and worsening of liver (47) and kidney (34) disease.

Additional treatments for specific comorbidities

Diabetes

- Metformin is a first-line agent for diabetes and insulin resistance. (Class IIa, Level C)
- Insulin is effective for hyperglycemia. In some patients, concentrated preparations and high-doses may be required. (Class IIa, Level C)
- Thiazolidinediones may improve metabolic complications in partial lipodystrophy but should only be used with caution in generalized lipodystrophy. (Class IIb, Level B)

Among the oral hypoglycemic agents, metformin is used most frequently. In patients with partial lipodystrophy, thiazolidinediones improved HbA1c, triglycerides, hepatic volume, and steatosis but may increase regional fat excess (Supplemental Table 5) (60, 61). In patients with high insulin requirements, concentrated insulins should be considered (62). Insulin glargine and degludec kinetics may be altered when injected in lipodystrophic areas because their long duration of action requires sc fat (63, 64). Patients with generalized lipodystrophy may have to take insulin by im routes for the lack of sc fat. Many other hypoglycemic agents have been used in lipodystrophy, but their efficacy has not been studied.

Dyslipidemia

- Statins should be used concomitantly with lifestyle modification (after consideration of age, reproductive status, and tolerance). (Class 1, Level C)
- Fibrates and/or long-chain omega-3 fatty acids should be used for triglycerides >500 mg/dL and may be considered for triglycerides >200 mg/dL. (Class IIb, Level C)

Lipids should be managed in accordance with U.S. and European guidelines for the general population, with statins as first-line therapy (65–67). Statins and fibrates should be used with caution due to increased risk of myopathy, especially in the presence of known myositis or muscular dystrophy (68). Because cardiovascular risk may be enhanced in lipodystrophic syndromes independent of other risk factors, clinicians may consider applying stricter lipid targets (eg, LDL-cholesterol <100 mg/dL, non-HDL-cholesterol <130 mg/dL, triglycerides <200 mg/dL), even in patients without diabetes. In addition to diet, fibrates and long-chain omega-3 fatty acids from fish oils have wide clinical use to avoid acute complications of severe hypertriglyceridemia (46) but have not been formally studied. Plasmapheresis has been used in extreme hypertriglyceridemia, but must be repeated frequently (69). Additional lipid-lowering drugs have not been studied in patients with lipodystrophy.

Hypertension

- Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers are first-line treatments for hypertension in patients with diabetes. (Class IIa, Level C)

As in other patients with diabetes, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers should be used for hypertension (70).

Liver disease

Cholic acid did not reduce hepatic steatosis in patients with FPLD in a double-blind, placebo-controlled crossover study (71). In NAFLD not associated with lipodystrophy, diet and exercise are first-line treatments (72), and among pharmacological treatments, vitamin E (in children and adults) (73, 74) and pioglitazone (in adults) (73, 75) have shown the most consistent benefit for liver histopathology. However, these treatments have not been
studied in patients with lipodystrophy and are not approved for NAFLD.

Cosmetic treatment

- Patients should be assessed for distress related to lipodystrophy and referred as necessary to mental health professionals and/or plastic surgeons. (Class IIa, Level C)

Changes in physical appearance from lipodystrophy can cause psychological distress and physical discomfort (e.g., from absent fat pads in feet or buttocks). Data regarding cosmetic surgery are limited. For facial lipoatrophy, autologous fat transfer (in APL), dermal fillers (7, 76), or muscle grafts (77) may be used. Excess fat from the head, neck, or vulva may be surgically reduced or ameliorated by liposuction (7). Breast implants are helpful in some women (78, 79). Acanthosis nigricans is improved through successful treatment of insulin resistance (80, 81). Management of hirsutism is reviewed elsewhere (82).

Contraception and hormone replacement therapy

- Oral estrogens are contraindicated. (Class IIa, Level C)
- If contraception is needed, progestin-only or nonhormonal contraceptives should be considered. (Class IIa, Level C)
- If estrogen replacement is needed, transdermal estrogen should be used. (Class IIa, Level C)

Oral estrogens are contraindicated in lipodystrophy syndromes due to the risk of severe hypertriglyceridemia and acute pancreatitis. Transdermal estrogens may be safer due to lesser hepatic exposure (83). There is clinical experience in the safe use of oral progestins and progestin-containing intrauterine devices.

Pregnancy

- Pregnant patients should receive prenatal care from an obstetrician experienced in managing diabetes and a physician experienced in managing lipodystrophy. (Class IIa, level C)
- Should a patient become pregnant while taking metreleptin, clinicians may consider continuing metreleptin if withdrawal would harm the mother and fetus and the patient understands that the effects of metreleptin in pregnancy are unknown (FDA category C), and wishes to continue. (Class IIc, level C)

In patients with lipodystrophy with extreme insulin resistance, worsening insulin resistance during pregnancy may make diabetes management difficult, with attendant fetal risks. Furthermore, metreleptin withdrawal has been associated with rebound hypertriglyceridemia (41), placing patients at risk for pancreatitis, endangering both mother and fetus.

Conclusions

Lipodystrophy syndromes are heterogeneous with diverse pathophysiology. For diagnosis, clinical recognition and physical examination are critical. In management efforts, attention should be paid to metabolic derangements and to many other facets of these syndromes affecting multiple organs and quality of life.

Acknowledgments

We thank the staff of the Pediatric Endocrine Society for their help in sponsoring and organizing this practice guideline, the patients from around the world whose contributions to research allowed the development of these guidelines, and Elaine Cochran for providing the guideline for metreleptin dosing.

Address all correspondence and requests for reprints to: Rebecca J. Brown, MD, MHS, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10-CRC, Room 6-5942, 10 Center Drive, Bethesda, MD 20892. E-mail: brownrebecca@niddk.nih.gov.

This practice guideline was sponsored and organized by the Pediatric Endocrine Society via an unrestricted education grant from AstraZeneca. Individual authors were supported by the intramural research program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Grants RO1-DK088114, RO1-DK105448, and RO1-DK101941; the Sopha Fund for Lipodystrophy Research at the University of Michigan, and Grant 14-35-00026 of the Russian Science Foundation.

Endorsing Societies include: Pediatric Endocrine Society, American Diabetes Association, American Association of Clinical Endocrinologists, Endocrine Society, Japanese Society for Pediatric Endocrinology, Australasian Pediatric Endocrine Group, European Society for Pediatric Endocrinology, Asia Pacific Pediatric Endocrine Society, African Society for Pediatric and Adolescent Endocrinology, and International Society for Pediatric and Adolescent Diabetes.

Disclosure Summary: R.J.B., P.T.C., D.D., M.J., L.M., N.P., K.R., J.v.S., E.S., T.S., M.W., R.W., and T.Y. have nothing to declare. A.G. consults for Aegerion Pharmaceuticals, Ionis, and Amgen; previously consulted for Biomedical Insights, Clearview Healthcare, Gerson Lehrman, and Smithsolve; and received grant support from Aegerion Pharmaceuticals, Pfizer (2013–2016), and Ionis Pharmaceuticals (2015–2017). D.A.-V. has consulted for Bristol-Myers Squibb and AstraZeneca. E.A.O. received past grant/drug support from Bristol-Myers Squibb, AstraZeneca, and Amylin Pharmaceuticals; current research/drug support from Aegerion Pharmaceuticals and Ionis Pharmaceuticals; previously consulted for all of the previously listed companies; and is a current consultant to AstraZeneca, Aegerion, and Ionis Pharmaceuticals. C.V. has consulted for AstraZeneca and Aegerion Pharmaceuticals.
References

12. Garg A. Gender differences in the prevalence of metabolic com-

31. Mechan CA, Cochran E, Kassai A, Brown RJ, Gorden P. Metreleptin for injection to treat the complications of leptin deficiency in

79. Hughes JM, Stephen C, Johnson AB, Wilson S. Breast augmenta-

